
An Extension of the String-to-String Correction Problem

ROY LOWRANCE AND ROBERT A. WAGNER

Vanderbil t Universi ty , Nashvil le , Tennessee

ABSTRACT. The string-to-string correction problem asks for a sequence S of "edit operations" of
minimal cost such that ~(A) = B, for given strings A and B. The edit operations previously investi-
gated allow changing one symbol of a string into another single symbol, deleting one symbol from a
string, or inserting a single symbol into a string. This paper extends the set of allowable edit opera-
tions to include the operation of interchanging the positions of two adjacent characters Under
certain restrictions on edit-operation costs, it is shown that the extended problem can still be solved
in time proportional to the product of the lengths of the given strings.

KEY WORDS AND PHRASES: string correction, string modification, correction, spelling c o r r e c t i o n ,

permutations

CR C~.TEOORZES. 3.79, 4.12, 4.22, 5.23, 5.25

1. I n t r o d u c t i o n

In [1] a problem is described called the string-to-string correction problem. Given strings
A and B, a set of "edit operations" taking strings into strings, and a set of weights for
those operations, find a sequence of edit operations S such tha t the sum of the weights of
the edit operations is minimal and S converts A to B. The following three edit operations
and their weights were considered: (1) insert a character (weight Wi) ; (2) delete a
character (weight WD); and (3) change a character into any other character (weight
We) . An algori thm is presented in [1] which determines the minimal sum of weights for
such an S which rmls in t ime proportional to the product of the lengths of A and B.

We show how the set of edit operations can be extended to include: (4) interchange
any two adjacent characters (weight Ws), and we present an algorithm for determining
the minimal sum of weights in t ime proport ional to the product of the lengths of the
strings, (The t ime required remains of the same order as tha t needed by the algori thm
in [1], bu t the constant of proport ionali ty is larger.)

2. P r e l i m i n a r i e s

For notation, we use A and B for strings, I A I for the length of A (number of characters,
possibly zero), A (i : j) for the substring A (i) • • • A (j) of A, and A (i) for A (i : i) . If S
is a sequence of edit operations, S -- $1S2 . . . S , , by S (A) we denote the function
composition S i ° & ° . . . ° S , (A) = S n (" . . (S i (A)) . . .) -- S i S , . . . S , (A) .

A useful model has been developed in [1]. Given strings A and B, consider the diagram
shown in Figure 1. A line from A (i > to B < j) indicates tha t A (i) should be changed to
B<3), if A (i) ~ B (j) , or tha t A (i) is not to be disturbed, bu t becomes B(3), if A (i) =

B (j) . Characters of A not touched by a line are to be deleted and characters of B not

Copyright © 1075, Association for Computing Machinery, Inc. General permission to republish,
but not for profit, all or part of this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.
This work was supported by the NSF under Grant GJ-33014.
Authors' present addresses : R. Lowrance, 255 West Squire Drive, Rochester, NY 14623; R. A Wagner,
Department of Systems and Information Sciences, Vanderbilt University, Nashville, TN 37235

Journal of the Association for Computing Machinery) Vol. 22, No. 2, April 1975, pp. 177-183.

178 R. LOWRANCE AND R. A. WAGNER

A a b c d A a b ~c d

FIG. 1 FIG. 2

touched are to be inserted. Such a diagram is called a trace. I t gives a method for changing
string A into string B. We extend this model by allowing lines to cross, as shown in Figure
2. Lines which cross indicate tha t the characters are to be interchanged. More formally, if
A and B are strings, we define T = [U, A, B] to be a trace from A to B provided that

(1) U ~ XA X X , , where Xc = {i I / integer, and 1 < i < tCII ;
(2) if (~ , 2~) and (i2,32) E U, il = i2 if and only if j l = j2.

Thus XA and X , are the point sets derived from A and B, and U is a collection of ordered
pairs (i, .7) interpreted to be line segments joining character A (i) to B (2). For notation, if
u E U, wewill usually set u = (u l , u2). We say u and v cross just when ul < vl if and only
if u2 > v2. Each pair of lines which cross gives rise to one line crossing. If u = (i, j) E U,
we say that u is a balanced line of U provided that A(i} -- B (j) ; we say u is an unbalanced
line if A(~) ~ B(j).

With each trace T = [U, A, B] from A to B, we associate its cost C(T) , the sum of
(1) WD X (the number of points in Xa not adjacent to a line of U) ;
(2) Wi X (the number of points in X , not adjacent to a line of U);
(3) -Wc X (the number of unbalanced lines of U); and
(4) Ws X (the number of line crossings in U).
We wish to convert the search for a minimal weight sequence of edit operations to a

search for a minimal cost trace. Section 3 justifies tha t conversion.

3. Traces and Edit Operations

LE~fMA 1. Let T be a trace from A to B. I f u and v cross and lul -- vlt = 1, then there is a
trace T r = [U ~, A ~, B] from A ' to B such that (1) C (T ') = C (T) - W s ; and (2) A ~ is de-
rived from A by interchanging characters ul and vl of A .

PROOF. Let U' = U - {u, v} (J { (ul , v~), (vl , u2)}. The operations on U amount to
detaching u and v from Ul and vl of A and then reattaching to vl and u~ of A' , respectively.
This decreases the number of line crossings by one and leaves the other three terms in the
sum C(T) unchanged. Hence C(T p) = C(T) - W s •

Definition. A trace T is reduced if it contains no lines which cross.
LEMMA 2. Let T be a reduced trace from A to B. There ~s a sequence of edit operations S

from ,~(A) to B such that (1) W (S) = C(T) ;and (2) S(A) = B.
Pro)OF. A proof can be found in [1].
LE~IMA 3. Let T = [U, A , B] be a trace from A to B satisfying: (1) each point of X ~ is

ad3acent to some line of U, and (2) T contains N line crossings. There ~s a sequence S of edit
operatwns and a trace T ~ -- [U', S (A) , B] such that (i) W (S) -- N X Ws; (2) C(T') =
C(T) - W (S) ; and (3) T r contains no lzne crossings.

PROOF. If N = 0, then wetake T ~ = T and S = ~ , so we may assume N > 0. Since
all points of XA are adjacent to elements of U and since N > 0, there is a pair of lines u
and v in U which cross with [Ul - vii = 1. Apply Lemma I to build a trace T1 . Add to S
the edit operation "interchange ul and vl." T1 satisfies C(T1) = C(T) -- Ws and T1 con-
tains one less line crossing from T. Continuing in this manner, we can construct traces
T = To, T1, T2, . . . , T~ = T' such that C(Tk+i) = C(Tk) - W s and Tk+l is derived
from Tk by the application of an interchange operation.

THEOREM 1. Let T be a trace from A to B. There is a sequence S of edit operations such
that (1) W (S) = C (T) , a n d (2) S (A) = B.

PROOF. Let there be ND points in XA not touched by a line, N1 points in XB not
touched by a line, Nc unbalanced lines, and Ns line crossings. Place one delete operation
in $1 for each point of X~ not adjacent to a line and consider the simplified trace T1 which
results from removing these points of XA . TI is a trace from S i (A) to B and satisfies

An Extension of the String-to-String Correction Problem 179

C(T1) = C(T) - ND X WD • All points of XSl(a) are adjacent to a line, and W(Si) =
ND X WD • For each of the Ns line crossings in T i , add an interchange operation to S,
and consider the reduced trace T2 which results from operations on T, as specified in
Lemma 3. T2 is a trace from S2(Si(A)) to B, W (S2) = Ns X Ws , C(T2) = C(T1) -
Ns X Ws • Since T2 contains no line crossings, Lemma 2 implies the existence of a set of
edit operations S~ such that W(S3) = C(T~) and Sa(S2(Si(A))) = B. Thus

W (S) = W(SlS2Sa) = W (S ,) "4- W(S2) -b W(Ss) = C(T2) + W(S2) "4- ND X W , .

Now it is only necessary to show tha t W(S2) = Ns X Ws • This follows from Lemma 3.
Hence W (S) = C(T) .

THEOREM 2. Let S be a sequence of edit operations on A. Let B = S(A). There is a trace
T from A to B such that C(T) < W (S) .

PROOF. We construct T. Imagine tha t each character A(i) of A is written on a slip of
paper together with its position i. Apply the sequence of edit operations to the ordered
slips of paper as follows:

(1) a delete operation discards a slip of paper;
(2) aninsert operation introduces a new slip of paper on which appear the inserted char-

acter and the number 0;
(3) a change operation replaces a character by another character;
(4) an interchange operation interchanges the positions of two slips of paper.
After the edit operations are performed, a sequence C~, • • -, C. of numbered slips re-

mains.
Let U = {(number(Ck), k) [1 < k < n, number(Ck) ~ 0}, where number (C) is the

number appearing on slip C. If T = [U, A, B], C[T] < W (S) , since:
(1) any character A(i) of A not touched by a line (i, j) E U satisfies V, E { 1, . - . , n},

number(C3) ~ i, and hence A(i) must have been deleted;
(2) any character B(i) of B not touched by a line (i,j) E U satisfies V, E I 1 , . . , n},

number (C,) ~ j, and B (3) must therefore have been inserted;
(3) any line (i, j) for which A(~) ~ B(j) results from at least one change operation

effecting A (i); and
(4) a pair of lines which cross must correspond to at least one interchange operation on

A.
Thus each component of C(T) is individually less than or equal to the number of oc-

currences of the corresponding component of W(S) . Hence, C(T) ~. W(S) .

4. Proper$ies of Traces

Definition. If [Ti, A1, B1] and IT2, A2, B2] are traces, then we say tha t (T1, T~) con-
stitutes a partition of the trace [T, A1A2, B1B2] just when T = Ti I.J (T2 + (IA1], IBiI)),
whereR -t- (i, 3) means{ (u-b i, v + j) I (u, v) C R}.

Since no lines of T2 -4- (IAll, IBll) = T2' cross any lines of T1 in T, and each line of Tl
and T2' touches exactly the same characters of A, and B, tha t the corresponding line of
[T. , A , , B.] touches, we have

2

C(T) = ~ C(T,) . (1)

An obvious generalization allows a partition of any number k of components T1, . . . , Tk
to be constructed satisfying (1). Of course, given IT, A, B], we may be able to find T1,
T2, A~, A2, B~, B2 such tha t T = T, tJ T~', Ti N T2' =~2~, T~' = T2 + (IA,I, [B,I),
A = A lAs , B = B1B~, and IT, , A . , B,] is a trace, i = 1, 2. This is possible nontrivially
whenever T can be partitioned into two nonempty sets T1 and T2' such tha t no line of TI
crosses a line of T~'. (When T cannot be so partitioned, T cannot, apparently, be parti-
tioned into traces T~ and T~' with property (1).)

For certain choices of weights Ws , W~, WD, and W c , any minimal trace may be par-

1 8 0 R. LOWRANCE AND R. A. W A G N E R

t i t ioned into components containing at most two lines. One such choice of weights is

2Ws >_ W1 + W D . (2)

In what follows, we v~ill investigate the consequence of this choice of weights and de-
velop an algorithm which finds a minimal trace quickly, whenever the weights satisfy (2) .

THEOREM 3. If 2 Ws _> W i + WD , there is at least one mimmal trace T from A to B
such that no line of T crosses more than one other line.

PROOF. Suppose IT, A, B] is a minimal trace containing a line u which crosses n _> 2
otherlines. Let T' be T - {u}. Then C(T ') = C(T) -- n W s + W1 + WD, since n W s _>
2Ws ~.: W i + WD , C(T ') _< C (T) .

THEOREM 4. If 2Ws >_ W~ + WD , then at least one minimal cost trace [T, A, B] exists
such that every line of T crosses at most one other l,ne and such that every line of T which crosses
another line is balanced.

PRoof. Suppose [T, A, B] is a minimal cost trace from A to B satisfying Theorem 3
and tha t u E T is an unbalanced line which crosses another line v of T, where
u = (u l , u2), v = (Vl, v2), and vl < u l . Let T' = T - {u, v}. Suppose v is unbalanced.
Then

C(T) = C(T ') + 2Wc + Ws - 2WD -- 2Wx.

Let u ' = (u l , vs), v' = (Vl, u2), and T" = T' O {u', v'}. Then

C (T ") < C(T ') + 2Wc - 2WD -- 2W~ < C (T) ,

so T" is also minimal, T" has two fewer unbalanced crossing lines than T, and T" has
no addit ional crossings.

Suppose v is balanced. Then

C (T) = C(T') + Wc + Ws - 2WD -- 2W~ ; C(T") < C (T ') + 2 W c - 2WD -- 2 W , .

Two cases arise: (1) Wc ~ W s , and (2) Wc > W s . In case (1), C (T ") < C (T) , so
T" is again minimal, with one fewer unbalanced crossing line than T and no addit ional
crossings. In case (2), Wc > Ws •

Consider T " = T' {J {v}.

C (T ') = C(T ') - W~ - WD,

C(T) = C(T ') T W c - ~ W s - 2 W ~ - - 2WD

>_ C(T ') + 2Ws -- 2Wi -- 2WD

> C(T ') -- W , - WD = C (T ") .

T " has one fewer unbalanced crossing line than T and no addit ional crossings. The theorem
follows by induction on the number of unbalanced crossings.

THEOREM 5. If 2Wz ~_ Wx + WD , there ,s at least one mm,mal trace IT, A, B] satis-
fying Theorems 3 and 4 and such that, i f u = (ul , u2) and v = (vl , vs) are lines m T which
cross, w,th ul < v~ , then there are no ,ntegers , (ors) such that

(1) ul < i < v landA(u l) = A(i)or , symmetrically,
(2) vs < j < usandB(v2> = B(j) .
PROOF. Suppose T is a trace satisfying Theorems 3 and 4 and suppose i exists as in

Theorem 5(1). Let T' = T - {u} U {(~,us)}.
Since A(~) = A(ul), (i, us) is balanced if and only if u is balanced. By Theorem 3, u

crosses only v. Therefore, no lines (k, l) exist in T such tha t ul < k < v~, since any such
lines must cross either line u or line v. In T', (i, us) still crosses only v. So C(T ') = C (T) .
Similarly, if 3 exists as in Theorem 5(2), v can be replaced by (Vl, j) without changing the
cost of T. Repeated application of these operations produces a minimal trace with no lines
u or v which cross and satisfy Theorem 5(1) or (2).

Any trace T which satisfies properties (i) - (i i i) below is said to be a restricted trace.
(i) No line of T crosses more than one other line.

A n Extension of the String-to-String Correction Problem 181

(ii) Every line of T which crosses another line is balanced.
(iii) I f u = (u l , u~) and v = @1, v~) are lines of T which cross, with ul < vl , then there

are no integers i (or3) such tha t (1) ul < i < vl and A(Ul) = A(i> or (2) v2 < j < u2
and B(v2) = B(j) .

If edit-operation weights W s , W~, and WD satisfy (,) 2Ws ~_ Wi + WD , then, for
every minimal cost trace T, there exists a restricted trace T' with C(T') _< C(T) . Since
T' is also a trace, C(T') >_ C(T) as well, for C(T) was minimal. Thus, whenever (*)
holds, the search for a minimal cost trace need not consider any nonrestricted trace.

We note tha t (,) holds when W~ = WD = Ws = W e , and hence the problem of finding
a minimal length sequence of edit operations reduces to a search for a minimal cost re-
str icted trace whose weights are W1 = WD = Ws = Wc = 1.

When (*) does not hold, a much more complicated situation exists. In particular, for
proper choices of weights (take Wc > W~ + WD > 2Ws), the minimal cost trace T may
be a "daisy-chain," containing lines which touch every character of A and of B, but such
tha t no par t i t ion of T exists. For example,

B b ~ dXa f~':c h~e b'~g d~a f'~c h><e ,g (3)

With Ws = 1, W~ = 1, W , = 2, Wc = 4, thecos t of the above trace is 15Ws = 15.
A minimal cost restricted trace ~ is

a~b c d ~ f g a b a~b ~ d e ~ g~.h (4)
b ~ d~a fr~ h~e b ~g d~a f~c h~'e g

I ts cost is 5Ws + 5(Wi + WD) = 20. At present, we know of no algorithm of speed com-
parable to the algorithm presented in Section 5, which can find a minimal cost trace when
such a trace can consist of arbi trar i ly long "chains" of crossed lines.

5. An Algorithm

We present an algorithm which finds a minimum cost restricted trace. This algorithm
solves the extended string-to-string correction problem whenever 2Ws ~_ W1 + WD •

Let T[z, j] denote a trace from A (1 : z) to B(1 : j) and let T*[i, j] denote a restricted trace
of minimal cost. Define H[z,j] = C(T*[i,3]). Suppose tha t for 0 < k < i and 0 _< n _< j ,
H[k, n] are known when k < i or n < j , and we wish to calculate H[i, j]. There are four
possibilities.

(1) A(i) is not touched by a line of T*[i,3]. Then H[i,3] = H[i - 1,3] + WD •
(2) B(j) is not touched by a line of T*[i,j]. Then H[z,j] = H[i , j - 1] + W i .
(3) A(z) and B(j) are touched by the same line of T*[i, j]. Then

H[i, j] = H[i - 1, j - 1] + d, where d = Wc if A(i) ~ B(3) and d = 0 otherwise.
(4) A(i) and B(j) are touched by different lines of T*[i, j]. Let (z, j) and (i , y) be the

fines. Then H[i, 3] = H[x - 1, y -- 1] + (z - x - 1) X WD + Ws + (3 -- Y -- 1) X
W~, since by Theorem 3, no other lines of T*[i, j] cross these (necessarily mutually cross-
ing) lines.

Consider case (4). By Theorem 4, we know tha t we may take A(~) -- B(j) and A(i) =
B(y). Also, by Theorem 5, x must be the largest integer less than or equal to i such tha t
A(x) = B(j) . Likewise, y is the largest integer less than or equal to j such tha t B(y) =
A (i). These considerations suggest recording, for each pair (i, a) , where i is an integer and
a is an alphabet character, the largest x < i such tha t A(x) = a, and likewise for string B.
This function can be computed in t ime proport ional to IA{ + IBI. To conserve storage
space, however, some of the function values will be recomputed each t ime they are
needed. In the algorithm, we will need to represent each character by an integer. We use
A[~] for the integer representing A(i) and B[j] likewise. The range of A[i] and B[j] lies in
{1,2, . . . , e l .

Trace (4) was discovered by the algorithm of Section 5 and thus is known to be a minimal cost
restricted trace.

182 R. LOWRANCE AND R. A. WAGNER

ALGORITHM S

1. I N F ~ - [A I * W D + I B J * W i + i ;
2. for z ~-- 0 s t e p 1 u n t i l I A] do
3. beg in H[i, 0] ~-- i * WD;
4. H[% --1] ~- I N F end;
5. for j ~-- 1 s t e p 1 u n t i l t B I do
6. b e g i n H[O, j] *- y * Wz ;
7. H[-1 , 3] ~-" INF end;
8. for d ~-- I s t e p 1 u n t i l C do DA[d] ~-- 0;
9 for i ~-- 1 s t e p 1 u n t i l I A I do

10. b e g i n D B ~ 0;
11. for 3 ~-" 1 s t e p 1 u n t i l [B I do
12. begin zl ~-- DA[B[j]];
13. j l *-- DB"

C o m m e n t : Each time execution reaches this point, DA[c] holds the largest x _< ~ - 1 such
that A[~c] = c, for every character c Also, DB holds the largest y < 3 - 1 such that B[y] =
A [~]. These computations permit the only possible x and y to be calculated in constant time
when the pair of crossing hnes (x, 3) and (% y) are to be examined as candidates for inclu-
stun in T*[% 3];

d ~- i f A[i] = B[j] t hen 0 e l s e We ;
i f A[~] = B[3] t h e n DB e-- 3;

L[. H[% 3] = rain(HI,-1, 3-1] + d,
H[i, 3-1] + W~,
HIs--l, j] q- WD,
H[~I~I, jl--1] @ (~--~1--1) X WD a u Ws + (3--31-1) X Wr)

14.
15.
16
17.
18.
19
20
21.
22.

end;
DA[A[,]I ~ i
end;

We note t h a t the value chosen for I N F exceeds the cost of the " e m p t y " t race (which
conta ins no lines) from A to B. The value of I N F therefore exceeds the cost of the mini -
m u m cost restr icted trace from A to B and also the cost of any trace T*[~, 3]. Thus , the
rain opera t ion in lines 16-19 will never assign a value greater t h a n or equal to I N F to
H[i, j l .

To show tha t the ass ignment s t a t eme n t labeled L1 is correct, we define an auxil iary
funct ion G as

0, if ~ = 0;
G (X , c, i) = i, i f z > 0 a n d X [i] = c;

G (X , c , i - 1), if i > 0 a n d X [i] ~ c .

Thus , G (X , c, i) is the largest k < i such t ha t X[k] = c. We claim tha t jus t before the l ine
labeled L1 is executed,

(1) D B = G(B, A[z],3);
(2) DA[d] = G (A , d, i -- 1) for each d C {1, 2, -. -, C},

0, if A[i] = B[3],
(3 ' d = W c , ifA[z] ~ B[j];

(4) i l = G (A , B[j], i -- 1);
(5) j l = G (B , A [i] , j - 1).
To show (1) , let DBk be the va lue of D B after lin e 15 has been executed exactly k t imes

following an execution of l ine 10. Since l ine 15 is executed for increasing values of .7 for
fixed i, and since DBo = 0 (l ine 10), when line 15 has been executed k times, following a n
execution of l ine 10 we have

0,
DB~ = k,

DB(k_i) ,

i f k = 0;
if A[i] = B[k] and k > 0;
if A[i] # B[k] and k > 0.

This is the defini t ion of G(B, A[41, k) .

A n Extension of the String-to-String Correction Problem 183

We show (2) by induction on i. When ~ is 1, DA is a vector of zeros since it is initialized
in line 8 and not altered in lines 9-20 (we have used the fact that the algorithm contains
noGOTOs). Suppose that for z = k, we know DA[d] -- G(A, d, k - 1) for each d E
{ 1, 2 , • • . , C}. The assignment to DA in line 21 which occurs when i = k alters DA so that
DA[A[k]] = k. On the next iteration of the for - i loop, i is k --{- 1 and

~ G (A , d , k - 1), i f d ~ A [k] ;
DA[d] = (k , if d = A[k].

This is the defining formula for G(A, d, k) .
To show (3), note that only line 14 changes d, after line 10; it is apparent that (3) is

satisfied.
To show (4), recall that DA[d] is G(A, d, ~ - 1) and note that the only assignment to

i l (line 12) forces il to become G(A, B[j], z - 1).
To show (5), recall that we have shown DB = G(B, A[i], j) whenever L1 is executed.

I t is easy to modify the argument to show that just before line 15 is executed, DB =
G(B, A [i], j - 1). This relation also holds at line 13.

6. Summary

We have derived an algorithm which computes the smallest edit-operation distance be-
tween two strings, when given two strings A and B and a set of weights for edit opera-
tions such that 2Ws _> Wi T WD. The algorithm uses space and time proportional to
IA[X [B]. If the actual sequence of edit operations is needed, it may be derived by look-
ing back through H and finding the choices made at L1 by the algorithm.

R E F E R E N C E

1. WAGNER, R. A., AND FISCHER, M. J.
(Jan. 1974), 168-173

The s t r ing- to-s t r ing correction problem. J. ACM 2l, 1

RECEIVED SEPTEMBER 1973; REVISED JULY 1974

Journal of the Assoclatlon for Computing Machinery, Vol 22, No 2, Aprll 1975

