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ABSTRACT. The string-to-string correction problem asks for a sequence S of "edit operations" of 
minimal cost such that ~(A) = B, for given strings A and B. The edit operations previously investi- 
gated allow changing one symbol of a string into another single symbol, deleting one symbol from a 
string, or inserting a single symbol into a string. This paper extends the set of allowable edit opera- 
tions to include the operation of interchanging the positions of two adjacent characters Under 
certain restrictions on edit-operation costs, it is shown that the extended problem can still be solved 
in time proportional to the product of the lengths of the given strings. 
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1. I n t r o d u c t i o n  

In [1] a problem is described called the string-to-string correction problem. Given strings 
A and B, a set of "edit  operations" taking strings into strings, and a set of weights for 
those operations, find a sequence of edit  operations S such tha t  the  sum of the  weights of 
the  edit  operations is minimal and S converts A to B. The following three edit  operations 
and their  weights were considered: (1) insert a character (weight Wi ) ;  (2) delete a 
character (weight WD); and (3) change a character into any other character  (weight 
We) .  An algori thm is presented in [1] which determines the  minimal sum of weights for 
such an S which rmls in t ime proportional to the  product  of the lengths of A and B. 

We show how the set of edit operations can be extended to include: (4) interchange 
any two adjacent  characters (weight Ws),  and we present an algorithm for determining 
the minimal sum of weights in t ime proport ional  to the product  of the lengths of the 
strings, (The t ime required remains of the same order as tha t  needed by the algori thm 
in [1 ], bu t  the constant of proport ionali ty is larger.) 

2.  P r e l i m i n a r i e s  

For  notation,  we use A and B for strings, I A I for the  length of A (number  of characters, 
possibly zero), A ( i  : j )  for the  substring A ( i )  • • • A ( j )  of A, and A ( i )  for A ( i  : i ) .  If  S 
is a sequence of edit  operations, S -- $1S2 . . .  S , ,  by S ( A )  we denote the  function 
composition S i °  & ° . . . ° S , (  A ) = S n (  " . . ( S i (  A ) ) . . . ) --  S i S ,  . . . S , (  A ) .  

A useful model has been developed in [1]. Given strings A and B, consider the diagram 
shown in Figure 1. A line from A ( i >  to B < j )  indicates tha t  A ( i )  should be changed to 
B<3),  if A ( i )  ~ B ( j ) ,  or tha t  A ( i )  is not  to be disturbed, bu t  becomes B(3), if A ( i )  = 

B ( j ) .  Characters of A not  touched by a line are to be deleted and characters of B not  
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touched are to be inserted. Such a diagram is called a trace. I t  gives a method for changing 
string A into string B. We extend this model by allowing lines to cross, as shown in Figure 
2. Lines which cross indicate tha t  the characters are to be interchanged. More formally, if 
A and B are strings, we define T = [U, A, B] to be a trace from A to B provided that  

(1) U ~ XA X X , ,  where Xc  = {i I / integer,  and 1 < i < tCII ; 
(2) if ( ~ ,  2~) and (i2,32) E U, il = i2 if and only if j l  = j2. 

Thus XA and X ,  are the point sets derived from A and B, and U is a collection of ordered 
pairs (i, .7) interpreted to be line segments joining character A (i) to B (2). For notation, if 
u E U, wewill usually set u = (u l ,  u2). We say u and v cross just when ul < vl if and only 
if u2 > v2. Each pair of lines which cross gives rise to one line crossing. If  u = (i, j )  E U, 
we say that  u is a balanced line of U provided that  A(i}  -- B ( j ) ;  we say u is an unbalanced 
line if A(~) ~ B(j).  

With each trace T = [U, A, B] from A to B, we associate its cost C(T) ,  the sum of 
(1) WD X (the number of points in Xa not adjacent to a line of U) ; 
(2) Wi X (the number of points in X ,  not adjacent to a line of U); 
(3) -Wc X (the number of unbalanced lines of U); and 
(4) Ws X (the number of line crossings in U). 
We wish to convert the search for a minimal weight sequence of edit operations to a 

search for a minimal cost trace. Section 3 justifies tha t  conversion. 

3. Traces and Edit  Operations 

LE~fMA 1. Let T be a trace from A to B.  I f  u and v cross and lul -- vlt = 1, then there is a 
trace T r = [ U ~, A ~, B ] from A '  to B such that (1) C ( T ' )  = C ( T ) - W s  ; and (2) A ~ is de- 
rived from A by interchanging characters ul and vl of A .  

PROOF. Let U' = U - {u, v} (J { (ul , v~), (vl , u2)}. The operations on U amount to 
detaching u and v from Ul and vl of A and then reattaching to vl and u~ of A' ,  respectively. 
This decreases the number of line crossings by one and leaves the other three terms in the 
sum C(T)  unchanged. Hence C( T p) = C( T)  - W s  • 

Definition. A trace T is reduced if it contains no lines which cross. 
LEMMA 2. Let T be a reduced trace from A to B.  There ~s a sequence of edit operations S 

from ,~( A ) to B such that (1) W ( S )  = C( T )  ;and (2) S(  A ) = B.  
Pro)OF. A proof can be found in [1]. 
LE~IMA 3. Let T = [U, A ,  B] be a trace from A to B satisfying: (1) each point of X ~ is 

ad3acent to some line of U, and (2) T contains N line crossings. There ~s a sequence S of edit 
operatwns and a trace T ~ -- [U', S ( A ) ,  B] such that (i) W ( S )  -- N X Ws; (2) C(T' )  = 
C(T)  - W ( S )  ; and (3) T r contains no lzne crossings. 

PROOF. If N = 0, then wetake T ~ = T and S = ~ ,  so we may assume N > 0. Since 
all points of XA are adjacent to elements of U and since N > 0, there is a pair of lines u 
and v in U which cross with [Ul - vii = 1. Apply Lemma I to build a trace T1 . Add to S 
the edit operation "interchange ul and vl." T1 satisfies C(T1) = C(T)  -- Ws and T1 con- 
tains one less line crossing from T. Continuing in this manner, we can construct traces 
T = To, T1, T2, . . . ,  T~ = T' such that  C(Tk+i) = C(Tk)  - W s  and Tk+l is derived 
from Tk by the application of an interchange operation. 

THEOREM 1. Let T be a trace from A to B.  There is a sequence S of edit operations such 
that (1) W ( S )  = C ( T ) , a n d  (2) S ( A )  = B.  

PROOF. Let there be ND points in XA not touched by a line, N1 points in XB not 
touched by a line, Nc unbalanced lines, and Ns line crossings. Place one delete operation 
in $1 for each point of X~ not adjacent to a line and consider the simplified trace T1 which 
results from removing these points of XA . TI is a trace from S i ( A )  to B and satisfies 
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C(T1) = C(T)  - ND X WD • All points of XSl(a) are adjacent to a line, and W(Si)  = 
ND X WD • For each of the Ns line crossings in T i ,  add an interchange operation to S, 
and consider the reduced trace T2 which results from operations on T, as specified in 
Lemma 3. T2 is a trace from S2( Si( A ) ) to B, W ( S2) = Ns X Ws , C( T2) = C( T1) - 
Ns X Ws • Since T2 contains no line crossings, Lemma 2 implies the existence of a set of 
edit operations S~ such that  W(S3) = C(T~) and Sa(S2(Si(A ) ) ) = B. Thus 

W ( S )  = W(SlS2Sa) = W ( S , )  "4- W(S2) -b W(Ss)  = C(T2) + W(S2) "4- ND X W , .  

Now it is only necessary to show tha t  W(S2) = Ns X Ws • This follows from Lemma 3. 
Hence W ( S )  = C(T) .  

THEOREM 2. Let S be a sequence of edit operations on A. Let B = S( A ). There is a trace 
T from A to B such that C(T)  < W ( S ) .  

PROOF. We construct T. Imagine tha t  each character A(i)  of A is written on a slip of 
paper together with its position i. Apply the sequence of edit operations to the ordered 
slips of paper as follows: 

(1) a delete operation discards a slip of paper; 
(2) aninsert  operation introduces a new slip of paper on which appear the inserted char- 

acter and the number 0; 
(3) a change operation replaces a character by  another character; 
(4) an interchange operation interchanges the positions of two slips of paper. 
After the edit operations are performed, a sequence C~, • • -, C. of numbered slips re- 

mains. 
Let U = {(number(Ck), k) [ 1 < k < n, number(Ck) ~ 0}, where number (C) is the 

number appearing on slip C. If  T = [U, A, B], C[ T] < W ( S) ,  since: 
(1) any character A(i) of A not touched by a line (i, j )  E U satisfies V, E { 1, . - . ,  n}, 

number(C3) ~ i, and hence A(i) must  have been deleted; 
(2) any character B(i) of B not touched by a line (i,j) E U satisfies V, E I 1 , . . ,  n}, 

number (C,) ~ j, and B (3) must therefore have been inserted; 
(3) any line (i, j )  for which A(~) ~ B( j )  results from at  least one change operation 

effecting A (i); and 
(4) a pair of lines which cross must correspond to at  least one interchange operation on 

A. 
Thus each component of C(T)  is individually less than or equal to the number of oc- 

currences of the corresponding component of W(S) .  Hence, C(T)  ~. W(S) .  

4. Proper$ies of Traces 

Definition. If  [Ti,  A1, B1] and IT2, A2, B2] are traces, then we say tha t  (T1, T~) con- 
stitutes a partition of the trace [T, A1A2, B1B2] just when T = Ti I.J (T2 + (IA1], IBiI)), 
whereR -t- (i, 3) means{ (u-b  i, v + j )  I (u, v) C R}.  

Since no lines of T2 -4- (IAll, IBll) = T2' cross any lines of T1 in T, and each line of Tl 
and T2' touches exactly the same characters of A, and B, tha t  the corresponding line of 
[T. ,  A , ,  B.] touches, we have 

2 

C(T)  = ~ C(T, ) .  (1) 

An obvious generalization allows a partition of any number k of components T1,  . . . ,  Tk 
to be constructed satisfying (1). Of course, given IT, A, B], we may be able to find T1, 
T2, A~, A2, B~, B2 such tha t  T = T, tJ T~', Ti N T2' =~2~, T~' = T2 + (IA,I, [B,I), 
A = A lAs ,  B = B1B~, and IT, ,  A . ,  B,] is a trace, i = 1, 2. This is possible nontrivially 
whenever T can be partitioned into two nonempty sets T1 and T2' such tha t  no line of TI 
crosses a line of T~'. (When T cannot be so partitioned, T cannot, apparently,  be parti-  
tioned into traces T~ and T~' with property (1).)  

For certain choices of weights Ws ,  W~, WD, and W c ,  any minimal trace may  be par- 
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t i t ioned into components containing at  most two lines. One such choice of weights is 

2Ws >_ W1 + W D .  (2)  

In  what  follows, we v~ill investigate the consequence of this choice of weights and de- 
velop an algorithm which finds a minimal trace quickly, whenever the weights satisfy (2) .  

THEOREM 3. If 2 Ws _> W i  + WD , there is at least one mimmal  trace T from A to B 
such that no line of T crosses more than one other line. 

PROOF. Suppose IT, A, B] is a minimal trace containing a line u which crosses n _> 2 
otherlines. Let  T'  be T - {u}. Then C(T ' )  = C(T )  -- n W s  + W1 + WD, since n W s  _> 
2Ws ~.: W i  + WD , C(T ' )  _< C ( T ) .  

THEOREM 4. If 2Ws >_ W~ + WD , then at least one minimal cost trace [T, A,  B] exists 
such that every line of T crosses at most one other l,ne and such that every line of T which crosses 
another line is balanced. 

PRoof.  Suppose [T, A, B] is a minimal cost trace from A to B satisfying Theorem 3 
and tha t  u E T is an unbalanced line which crosses another  line v of T, where 
u = ( u l ,  u2), v = (Vl, v2), and vl < u l .  Let  T'  = T - {u, v}. Suppose v is unbalanced. 
Then 

C(T)  = C(T ' )  + 2Wc + Ws - 2WD -- 2Wx. 

Let  u '  = ( u l ,  vs), v' = (Vl, u2), and T" = T' O {u', v'}. Then 

C ( T " )  < C(T ' )  + 2Wc - 2WD -- 2W~ < C ( T ) ,  

so T" is also minimal, T" has two fewer unbalanced crossing lines than  T, and T" has 
no addit ional crossings. 

Suppose v is balanced. Then 

C ( T )  = C(T' )  + Wc + Ws - 2WD -- 2W~ ; C(T")  < C ( T ' )  + 2 W c  - 2WD --  2 W , .  

Two cases arise: (1) Wc ~ W s ,  and (2) Wc > W s .  In  case (1),  C ( T " )  < C ( T ) ,  so 
T" is again minimal, with one fewer unbalanced crossing line than T and no addit ional  
crossings. In  case (2),  Wc > Ws • 

Consider T "  = T' {J {v}. 

C ( T ' )  = C(T ' )  - W~ - WD, 

C(T )  = C(T ' )  T W c - ~  W s -  2 W ~ - -  2WD 

>_ C(T ' )  + 2Ws --  2Wi --  2WD 

> C(T ' )  -- W ,  - WD = C ( T " ) .  

T "  has one fewer unbalanced crossing line than  T and no addit ional crossings. The theorem 
follows by  induction on the number of unbalanced crossings. 

THEOREM 5. If 2Wz ~_ Wx + WD , there ,s at least one mm,mal  trace IT, A,  B] satis- 
fying Theorems 3 and 4 and such that, i f  u = ( ul , u2) and v = ( vl , vs) are lines m T which 
cross, w,th ul < v~ , then there are no ,ntegers , (ors) such that 

(1) ul < i < v landA(u l )  = A( i )or ,  symmetrically, 
(2) vs < j  < usandB(v2> = B( j ) .  
PROOF. Suppose T is a trace satisfying Theorems 3 and 4 and suppose i exists as in 

Theorem 5(1).  Let T'  = T - {u} U {(~,us)}. 
Since A(~) = A(ul),  (i, us) is balanced if and only if u is balanced. By Theorem 3, u 

crosses only v. Therefore, no lines (k, l) exist in T such tha t  ul < k < v~, since any such 
lines must cross either line u or line v. In  T', (i, us) still crosses only v. So C(T ' )  = C ( T ) .  
Similarly, if 3 exists as in Theorem 5(2),  v can be replaced by  (Vl, j )  without changing the 
cost of T. Repeated application of these operations produces a minimal trace with no lines 
u or v which cross and satisfy Theorem 5(1) or (2).  

Any trace T which satisfies properties ( i ) - ( i i i )  below is said to be a restricted trace. 
(i)  No line of T crosses more than one other line. 
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(ii) Every line of T which crosses another line is balanced. 
(iii) I f  u = (u l ,  u~) and v = @1, v~) are lines of T which cross, with ul < vl ,  then there 

are no integers i (or3)  such tha t  (1) ul < i < vl and A(Ul) = A(i> or (2) v2 < j < u2 
and B(v2) = B(j) .  

If  edit-operation weights W s ,  W~, and WD satisfy ( , )  2Ws ~_ Wi  + WD , then, for 
every minimal cost trace T, there exists a restricted trace T' with C(T' )  _< C(T) .  Since 
T' is also a trace, C(T' )  >_ C(T)  as well, for C(T) was minimal. Thus, whenever (*) 
holds, the search for a minimal cost trace need not  consider any nonrestricted trace. 

We note tha t  ( , )  holds when W~ = WD = Ws = W e ,  and hence the  problem of finding 
a minimal length sequence of edit operations reduces to a search for a minimal cost re- 
str icted trace whose weights are W1 = WD = Ws = Wc = 1. 

When (*) does not hold, a much more complicated situation exists. In  particular,  for 
proper choices of weights ( take  Wc > W~ + WD > 2Ws),  the minimal cost trace T may 
be a "daisy-chain," containing lines which touch every character of A and of B, but  such 
tha t  no par t i t ion of T exists. For  example, 

B b ~ dXa f~':c h~e b'~g d~a f'~c h><e ,g (3) 

With  Ws = 1, W~ = 1, W ,  = 2, Wc = 4, thecos t  of the above trace is 15Ws = 15. 
A minimal cost restricted trace ~ is 

a~b c d ~ f  g a b  a~b ~ d  e ~  g~.h (4) 
b ~ d~a fr~ h~e b ~g d~a f~c h~'e g 

I ts  cost is 5Ws + 5(Wi  + WD) = 20. At  present, we know of no algorithm of speed com- 
parable to the algorithm presented in Section 5, which can find a minimal cost trace when 
such a trace can consist of arbi trar i ly long "chains" of crossed lines. 

5. An  Algorithm 

We present an algorithm which finds a minimum cost restricted trace. This algorithm 
solves the extended string-to-string correction problem whenever 2Ws ~_ W1 + WD • 

Let  T[z, j]  denote a trace from A (1 : z) to B(1 : j )  and let T*[i, j] denote a restricted trace 
of minimal cost. Define H[z,j] = C(T*[i,3]). Suppose tha t  for 0 < k < i and 0 _< n _< j ,  
H[k, n] are known when k < i or n < j ,  and we wish to calculate H[i, j]. There are four 
possibilities. 

(1) A(i)  is not touched by a line of T*[i,3]. Then H[i,3] = H[i - 1,3] + WD • 
(2) B( j )  is not touched by a line of T*[i,j]. Then H[z,j] = H[i , j  - 1] + W i .  
(3) A(z) and B( j )  are touched by the same line of T*[i, j]. Then 

H[i, j] = H[i - 1, j - 1] + d, where d = Wc if A(i)  ~ B(3) and d = 0 otherwise. 
(4) A(i)  and B(j )  are touched by different lines of T*[i, j]. Let (z, j) and (i ,  y) be the  

fines. Then H[i, 3] = H[x - 1, y -- 1] + (z - x - 1 )  X WD + Ws + (3 -- Y -- 1) X 
W~, since by Theorem 3, no other lines of T*[i, j] cross these (necessarily mutually cross- 
ing) lines. 

Consider case (4).  By Theorem 4, we know tha t  we may take  A(~) -- B( j )  and A(i)  = 
B(y).  Also, by  Theorem 5, x must be the largest integer less than  or equal to i such tha t  
A(x)  = B(j) .  Likewise, y is the largest integer less than  or equal to j such tha t  B(y)  = 
A (i). These considerations suggest recording, for each pair  (i,  a) ,  where i is an integer and 
a is an alphabet  character, the  largest x < i such tha t  A(x)  = a, and likewise for string B. 
This function can be computed in t ime proport ional  to IA{ + IBI. To conserve storage 
space, however, some of the function values will be recomputed each t ime they  are 
needed. In  the algorithm, we will need to represent each character by an integer. We use 
A[~] for the  integer representing A(i)  and B[j] likewise. The range of A[i] and B[j] lies in 
{1,2, . . . , e l .  

Trace (4) was discovered by the algorithm of Section 5 and thus is known to be a minimal cost 
restricted trace. 



182 R. LOWRANCE AND R. A. WAGNER 

ALGORITHM S 

1. I N F ~ - [ A  I * W D +  I B J * W i + i ;  
2. for z ~-- 0 s t e p  1 u n t i l  I A ] do  
3. beg in  H[i,  0] ~-- i * WD; 
4. H[% --1] ~- I N F  end;  
5. for j ~-- 1 s t e p  1 u n t i l  t B I do  
6. b e g i n  H[O, j ]  *-  y * Wz ; 
7. H[-1 ,  3] ~-" INF end;  
8. for  d ~-- I s t e p  1 u n t i l  C do  DA[d]  ~-- 0; 
9 for i ~-- 1 s t e p  1 u n t i l  I A I do  

10. b e g i n  D B  ~ 0; 
11. for 3 ~-" 1 s t e p  1 u n t i l  [ B I do  
12. begin zl ~-- DA[B[j]]; 
13. j l  *-- DB" 

C o m m e n t :  Each time execution reaches this point, DA[c] holds the largest x _< ~ - 1 such 
that A[~c] = c, for every character c Also, DB holds the largest y < 3 - 1 such that B[y] = 
A [~]. These computations permit the only possible x and y to be calculated in constant time 
when the pair of crossing hnes (x, 3) and (% y) are to be examined as candidates for inclu- 
stun in T*[% 3]; 

d ~- i f  A[i] = B[j] t hen  0 e l s e  We ; 
i f  A[~] = B[3 ] t h e n  DB e-- 3; 

L[. H[% 3] = rain(HI,-1, 3-1]  + d, 
H[i, 3-1] + W~, 
HIs--l, j] q- WD, 
H[~I~I, jl--1] @ (~--~1--1) X WD a u Ws + (3--31-1) X Wr) 

14. 
15. 
16 
17. 
18. 
19 
20 
21. 
22. 

end;  
DA[A[,]I ~ i 
end;  

We note  t h a t  the  value chosen for I N F  exceeds the  cost of the  " e m p t y "  t race (which 
conta ins  no lines) from A to B. The  value of I N F  therefore exceeds the  cost of the  mini -  
m u m  cost restr icted trace from A to B and  also the  cost of any  trace T*[~, 3]. Thus ,  the  
rain opera t ion in  lines 16-19 will never  assign a value greater t h a n  or equal  to I N F  to 
H[i, j l .  

To show tha t  the  ass ignment  s t a t eme n t  labeled L1 is correct, we define an  auxil iary 
funct ion  G as 

0, if ~ = 0; 
G ( X ,  c, i )  = i, i f z  > 0 a n d X [ i ]  = c; 

G ( X , c , i -  1), if i >  0 a n d X [ i ]  ~ c .  

Thus ,  G ( X ,  c, i )  is the  largest  k < i such t ha t  X[k] = c. We claim tha t  jus t  before the  l ine 
labeled L1 is executed, 

(1) D B  = G(B,  A[z],3);  
(2) DA[d] = G ( A ,  d, i -- 1) for each d C {1, 2, -. -, C}, 

0, if A[i] = B[3], 
(3 '  d = W c ,  ifA[z] ~ B[j];  

(4) i l  = G ( A ,  B[j], i -- 1);  
(5) j l  = G ( B , A [ i ] , j -  1). 
To show (1) ,  let  DBk be the  va lue  of D B  after  lin e 15 has been executed exactly k t imes 

following an  execution of l ine 10. Since l ine 15 is executed for increasing values of .7 for 
fixed i,  and  since DBo = 0 ( l ine 10), when line 15 has been executed k times, following a n  
execution of l ine 10 we have  

0, 
DB~ = k, 

DB(k_i) , 

i f k  = 0; 
if A[i] = B[k] and  k > 0; 
if A[i] # B[k] and  k > 0. 

This  is the  defini t ion of G(B,  A[41, k) .  
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We show (2) by induction on i. When ~ is 1, DA is a vector of zeros since it is initialized 
in line 8 and not altered in lines 9-20 (we have used the fact that the algorithm contains 
noGOTOs). Suppose that for z = k, we know DA[d] -- G(A,  d, k - 1) for each d E 
{ 1,  2 ,  • • . ,  C}. The assignment to DA in line 21 which occurs when i = k alters DA so that 
DA[A[k]] = k. On the next iteration of the for - i  loop, i is k --{- 1 and 

~ G ( A , d , k -  1), i f d ~ A [ k ] ;  
DA[d] = ( k ,  if d = A[k]. 

This is the defining formula for G(A, d, k) .  
To show (3), note that only line 14 changes d, after line 10; it is apparent that (3) is 

satisfied. 
To show (4), recall that DA[d] is G(A, d, ~ - 1) and note that the only assignment to 

i l  (line 12) forces il  to become G(A, B[j], z - 1). 
To show (5), recall that we have shown DB = G(B, A[i], j )  whenever L1 is executed. 

I t  is easy to modify the argument to show that just before line 15 is executed, DB = 
G(B, A [i], j - 1). This relation also holds at line 13. 

6. Summary 

We have derived an algorithm which computes the smallest edit-operation distance be- 
tween two strings, when given two strings A and B and a set of weights for edit opera- 
tions such that 2Ws _> Wi T WD. The algorithm uses space and time proportional to 
IA[ X [B]. If the actual sequence of edit operations is needed, it may be derived by look- 
ing back through H and finding the choices made at L1 by the algorithm. 
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